Oxford and Cambridge Schools Examination Board. 70

76/100

School Certificate Examination. 13 ELEMENTARY MATHEMATICS II:

FRIDAY, JULY 15th, 1949. 2 Hours.

[Answer all the questions in Section A (1-4) and not more than **five** of the questions in Section B (5-12).

Logarithms, slide-rules, or algebra may be used in any question, unless directions to the contrary are given.]

SECTION A.

1. Find the yearly interest on £2540 at $1\frac{3}{4}$ per cent. per annum.

Also find what sum of money will produce a yearly interest of £26. 13s. at $2\frac{1}{2}$ per cent. per annum.

[Neither logarithms nor slide-rules may be used in answering this question.]

2. Show that 2x-3 is a factor of $2x^3-3x^2-18x+27$, and find the other two factors.

Hence solve the equation

X

X

X

$$2x^3 - 3x^2 - 18x + 27 = 0.$$

(x-3)

3. ABCD is a square. L is the middle point of the side BC and M is the middle point of the side CD. Prove that the triangles ABL and BCM are congruent.

The lines AL and BM intersect at X. Prove that the angle AXM is a right angle.

4. In a rhombus ABCD the lengths of the diagonals AC and BD are respectively 10 cm. and 12 cm. Calculate the angles DAB and ABC to the nearest minute.

100° 22'

21066

[You may assume that the diagonals of a rhombus are at right angles to each other.]

Also calculate the length of the side AB to the nearest hundredth of a centimetre.

SECTION B.

5. Draw the graphs of

X

x

$$y = x^2$$
 and $y = \frac{1}{2}(x+4)$

for values of x from -2 to 2, using the same axes for both graphs; take 1 in. (or 2 cm. if you use centimetre paper) to represent the unit.

Hence find the roots of the quadratic equation

$$2x^2=x+4$$

as accurately as you can.

6. Draw a line 3 in. long and on this line as diagonal construct a square, using ruler and compasses, but not set-square or protractor.

Construct a line parallel to a side of the square so as to divide the square into two rectangles of which the areas are in the ratio 2:3.

[No proofs or explanations are needed, but all construction lines must be clearly shown.]

7. A rectangular airfield is represented on a map, of which the scale is 1 centimetre to 1 kilometre, by a rectangle measuring
X 3.5 cm. by 2 cm. Show that the area of the airfield is approximately 1730 acres.

[1 acre = 4840 sq. yd., 1 metre = 39.37 in.]

hectares

8. It is given that

$$x=1+\frac{p}{p-q}$$
 and $y=2-\frac{3q}{p+q}$.

Prove that

(i)
$$\frac{x}{y} = \frac{p+q}{p-q}$$
;

(ii)
$$\frac{3}{x} + \frac{1}{y} = 2$$
.

9. In a parallelogram ABCD, M is the middle point of the diagonal AC. A line through M (not parallel to AB or AD) cuts AB at P and DC at Q. Prove that

(i) AP is equal to CQ,

X

- (ii) BQ is equal to DP.
- 10. The shaded portion of the diagram represents a decoration which is cut out of thin metal. This decoration is constructed by taking a square ABCD of side 4 in. and describing a semicircle on each side. By subtracting the area of a triangle from that of a semi-circle, or otherwise, prove that the area of the decoration is $(8\pi-16)$ sq. in.

11. The numbers a, b and c are chosen so that

$$2x^2-3x-7=a(x-1)(x-2)+b(x-2)(x-3)+c(x-3)(x-1)$$

for all values of x. Find the value of a by substituting 3 for x in both sides of the equation.

Also find the values of b and c.

Hence, or otherwise, show that

$$\frac{2x^2 - 3x - 7}{(x - 1)(x - 2)(x - 3)} = \frac{1}{x - 3} - \frac{4}{x - 1} + \frac{5}{x - 2}.$$

12. The length of the edge of a cube is 2 in. ABCD is one of the faces of the cube and AP is the third edge through A. M is the middle point of AP. Make an accurate drawing of the triangle MBD.